第19回 教育研究技術支援室 技術発表会 発表資料·概要集

第19回教育研究技術支援室発表会 研究開発技術等の概要

学校名	仙台高専広瀬キャンパス		NO. 1					
氏名	佐々木 匠	職 名	技術職員					
研究開発	細た田いたテレクトロケンカル書フ	下知会						
技術等の題名	銀を用いたエレクトロクミカル素子の	の紹介						
1. はじめに	1. はじめに							
近代建築物にお	近代建築物において、多くの光を取り込むために開口の大きい窓の設置が増えてき							
ており、それに伴い窓から出入りする光や熱の効率的利用が重要になってきている。								
てこじ近年、透明	別から不透明に可迎的に変化する調尤刀 集まっている。このスマートウィンドウ	フス(スマ) に関して小	ートワイントワ .林ら[1]け透明					
6、黒面の3状	に入さな注日が集まっている。このスマートワイントワに関して小林ら[1]は透明、							
をしている。この) EC 素子は電極として表面形状が平坦面	iおよび粗面	「のスズ添加酸					
インジウム薄膜(Tin doped Indium Oxide, ITO)を使用し	ている。差	本状態は透明					
ある EC 素子に電	電圧を加え、平坦面を有する ITO 薄膜に	銀を析出さ	せることで鏡に					
粗面を有する IT	O 薄膜に銀を析出させることで黒面にお で狙た巫児ごさたたる IMO 芽芽し この	、態が変化す ままに 1000	る。小林らは					
ハツタリンク法	ぐ侍に半垣面を有する IIO 漙捩と、この 	衣面に IIU 10 蒲晴た <i>2</i>	「俶松士を古む」					
取扱をハビンコーた。	下仏て堅和・施成した祖国を有する							
本校の専攻研究	究[2][3]では、 平坦および粗面の ITO 薄膊	草の成膜方法	まとしてスプレー					
CVD (Chemical	Vapor Deposition,化学気相成長)法を用い	いた研究を:	おこなっている					
この方法は従来の	のスパッタリング等と異なり真空系およ	びプラズマ	発生用電源を					
要とせず、焼結体	では困難な薄膜の形成制御を原料溶液の)組成を変化 イ	はさせることで					
現り能としており	り、間里かつ女恤でめるという符長かめ。 のフプレーCVD 社に上る亚田西セトバ	る。 粗声を右す	る ITO 藩時の					
単法並びにこれ。	- のヘノレーUVD 伝による千垣面わよい らを用いた EC 素子の紹介をおこなう。	祖岨を有り	る110					
2. スプレーCV	D法							
本発表で紹介で	するスプレーCVD 法の模式図を図1に示	、す。 ホット	、プレート上に					
ラス基板を配置し	し、直上からスプレー噴霧器によりスプレ	/一溶液を噴	實霧する。 噴霧:					
れたスプレー溶液はホットプレートからの熱により気化し、ガラス基板表面に吸着す								
る。 吸有した原料は熱エイルキーを受けてマイクレーションし、やかて女走な場所に 移動! て図まり酸化する これを繰り返して蒲晴が形成される								
スプレーCVD 法は大気中にて成膜をおこなうため真空系が不要であり、簡単かつ								
安価な特徴を有し	している。また、原料を溶媒であるエタノ	ールに溶解	解させてスプレ-					
溶液とするため液	忝加濃度を容易に変化させることが可能⁻	である。						
	/i\							
	/ I \	Aonu	2ei					
Glass s								
Hot Plate								
図 1 スプレーCVD 法の模式図								

NO. 2

					1.0.	
学校名	仙台高専広瀬キャンパス	氏名	佐々木	匠		
3. 実験		1				
EC 素	EC 素子作製に必要な EC 素子用電解液と、ITO 薄膜作製に必要なスプレー溶液の					
調製法を	調製法を以下に示す。					
3. 1	EC 素子用電解液の調製					
硝酸錐	₹(I) (AgNO ₃)を原料とした EC 素子	・用電解液を	を調製した	こ。溶質として	て硝酸銀	
(I)85 g	g、添加剤として塩化銅(Ⅱ)二水和物	勿(CuCl ₂ ・	$2H_2O)13$	3 mg およびラ	テトラブ	
チルアン	イモニウムブロマイド(TBABr)806 r	ng を、溶媒	某であるシ	ジメチルスルオ	トキシド	
(DMSO)10 mL にそれぞれ溶かし込んだ。	さらに、ス	トストポリ	リマーとしてオ	ポリビニ	
ルブチラ	・ール(PVB)を加えて 12 時間以上撹	詳すること	こで EC 素	豪子用電解液 と	こした。	
3. 2	ITO 薄膜作製用スプレー溶液の調整	製				
主原料	↓である塩化インジウム(Ⅲ)四水和物	物(InCl3·4]	H2O)と涿	加剤の塩化>	スズ(Ⅱ)	
二水和物	』(SnCl ₂ ·2H ₂ O)を用いて、スズの添	加濃度が6	at.%、総	金属濃度が 0.	1 mol/L	
となるよ	、うエタノールで希釈し、12時間以	上撹拌する	ことでス	プレー溶液と	した。	
4. ITO	薄膜の作製					
平坦面	「ならびに粗面を有する ITO 薄膜の	作製法を以	、下に示す	0		
4.1	平坦面を有する ITO 薄膜の作製	1.1				
予め加	感したホットプレート上にガラス基	長板を置き、	基板表面	□温度が 430℃	ことなる	
ように設	設定し、スプレー溶液を直上15 cm (の局さから	5 杪間隔	で 200 回噴霧	手した。	
4.2	祖面を有するITO 薄膜の作製	0/12 13-		m Coot T	\	
次に予め加熱したホットブレート上にITO 付きガフス基板 (LFG001 Luntec) を置						
さ、基板表面温度か475℃となるよう設定し、スプレー溶液を直上30 cm の局さから						
1 秒间隔で 100 回噴霧 した。						
5 EC	素子の作制					
3. LC系すの作衆 FC 妻子の増式図を図 9 に示す 前述の亚相面な上び粗面を有する ITO 薄晴を厚く						
0.5 mm	のシリコンスペーサを用いて挟み辺	山山 その間	肌にECತ	ミンゴロ 存加 ほうしょう ほうしょう しょうしょう しょうしょう しょうしょう しゅうしょう しゅうしゅう しゅうしん しゅうしゅう しゅうしゅう しゅうしょう しゅうしょう しゅうしゅう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしゅう ほうしゅう しゅうしゅう しゅう	を充填す	
ることで EC 素子とした						
			平均	坦な ITO 薄膜↔		
	EC 素子用電解液↩			/		
	\					
シ	リコンスペーサー		K			
			-	粗面の ITO 薄膊	ŧ.	
図2 EC 茶子の 楔式図						
6. 結果	しと考察					
図 3 に作製した ITO 薄膜表面の FE-SEM 像を、図 4 に ITO 薄膜断面の FE-SEM						
像をそれぞれ示す。図3上り結晶の平均粒径け亚田かITO 藩間が719 nm 知面の						

像をそれぞれ示す。図3より結晶の平均粒径は平坦な ITO 薄膜が71.2 nm、粗面の ITO 薄膜が433.6 nm であった。また、図4より算術平均粗さを計算したところ、平 坦な ITO 薄膜の粗さが6.5 nm、粗面の ITO 薄膜の粗さが74.6 nm であることから、 両薄膜の粗さに十分な差があるため EC 素子用の電極として有効であると推測され る。

第19回 教育研究技術支援室 技術発表会 発表資料·概要集

ITO 薄膜に銀を析出させた時の FE-SEM 像を図 5 に示す。平坦な ITO 薄膜に析出 させた場合、銀は電極を埋め尽くすように析出している様子が確認できた。一方、粗 面の ITO 薄膜に析出させた場合、粗面の ITO 薄膜を形成する ITO 結晶の谷間に析出 していることが明らかとなった。

 (a)平坦面
 (b)粗面

 図5
 銀を析出させた ITO 薄膜表面の FE-SEM 像

NO. 4

学校名	仙台高専広瀬キャンパス	氏 名	佐々木 匠	
図6に	相面の ITO 薄膜に析出した銀粒子(の粒度分布	を図7に作	劃した FC 素子の

透過率および反射率をそれぞれ示す。平坦なITO薄膜に一の端子を、粗面のITO薄膜に+の端子を接続し、電極に±2.5Vを印加した時の透過率および反射率を測定した。

電圧を印加しない(0 V)場合、500 nm 付近では透過率は 40%と低い値を示してい るが、長波長になるにつれて値が大きくなり、700 nm 付近では 80%を超える値を示 した。EC 素子用電解液に関して TBABr のみを除いて調製すると溶液は白濁し、塩 化銅のみを除いて調製すると溶液は透明となった。このことから短波長側における透 過率の低減は TBABr と塩化銅が混ざることにより何かしらの錯体を形成し、光を吸 収しているのではないかと推定される。

+2.5 V印加時の反射率は 700 nm 付近では 100%に近い値を示していた。これは 銀鏡が形成されることによる光の反射であると推測される。-2.5 V印加した場合は 可視光透過率(380~780 nm)がほぼ 0%で、反射率も約 10%であることから黒面が形 成されていることが考えられる。-2.5 V印加では粗面の ITO 薄膜に銀粒子が析出し ている状態である。この場合の銀粒子は可視光の波長よりはるかに小さく、またその 大きさも 20~120 nm と不均一である。銀の微粒子はその粒径によってプラズモンの 吸収ピークが変化することが知られている。粗面の ITO 薄膜に析出した銀粒子は 10 ~100 nm 大の粒子が存在していることから、可視光波長を全て吸収し、黒色を呈し ていると考えられる。

図6 粗面の ITO 薄膜に析出した 銀の粒度分布

図7 EC素子の透過率および反射率

7. 結果、まとめ

本発表ではスプレーCVD 法により平坦面および粗面を有する ITO 薄膜を堆積し、 これらを用いて EC 素子を作製する研究について紹介した。作製した EC 素子は電圧 の印加によって銀の析出の仕方に変化が見られ、平坦な ITO 薄膜に析出した場合は 鏡になり、粗面の ITO 薄膜に析出した場合は黒面となったことから、EC 素子の作製 に成功したと言える。

参考文献

[1] K.Kobayashi, S.Araki, K.Nakamura, N.Kobayashi, Proc. IDW '11, pp.395-398.

[2] R. Onodera, Y. Seki, S. Seki, K. Yamada, Y. Sawada, T. Uchida, Proc. IDW/AD '12, EPp-16L.
[3] R. Onodera, Y. Seki, S. Seki, K. Yamada, Y. Sawada, T. Uchida, Appl. Phys. Express, 6 (2013) 026503-1/3.