Nonlinear Properties of Magnetic Materials

Takashi SHIRANE		
Professor		shirane@sendai-nct.ac.jp
Affiliated Societies	The Physical Society of Japan, The Institute of Electrical Engineers of Japan, The IEEE Magnetics Society, The IEEE Instrumentation and Measurement Society.	
		-

Keywords Applied physical properties-related (29010), Applied condensed matter physics-related (29030)

Research Topics

- · Measurement of linear and nonlinear susceptibilities, and magnetization curve
- · Data analysis and parameter identification based on hysteresis models
- · Monte Carlo simulation of magnetic lattice system

Research Seeds

Hysteresis Measurement by Lock-in Amplifier

Figure 1 shows a schematic of the measurement system. The system includes a Lock-in amplifier (LIA), a function generator (FG), a bipolar power supply (BPS), and a personal computer. To supply an AC current to the primary coil, the BPS is driven by the FG. The BPS also provides a reference signal to LIA by shunt resistance. By connecting the signal output from the secondary coil to the LIA, we measure the in-phase component V'_{n-1} and the out-of phase component V''_{n-1} of the fundamental and harmonics of the output voltage V. Both V'_{n-1} and V''_{n-1} are measured sequentially using a harmonic detection function of the LIA. Then a BH loop can be reconstructed from V'_{n-1} and V''_{n-1} by inverse Fourier transform. Figure 2 shows minor asymmetric BH loops measured at various field amplitudes. Because the LIA can extract a signal with a known carrier wave from an extremely noisy environment, this system is suitable for measuring BH loops of micro-magnets.

Fig. 1. Schematic of measurement.

Fig. 2. Asymmetric BH loops.

Research on Halbach-type Spin System

We have studied the feasibility and specific properties of a new type spin system, which is analogous to the Halbach array of ferromagnets, using Monte Carlo simulation.

Fig. 3. Halbach-type spin.

Fig. 4. Halbach array.

Related Technology

- · Numerical Analysis
- · Instrumentation and Measurement
- · Research on Phase Transition and Critical Phenomena