令和8年度仙台高等専門学校編入学学生選抜 学力面接質問課題 機械・エネルギーコース

質問課題は1ページから6ページまである.

印刷不鮮明,ページの落丁・乱丁及び汚れ等がある場合は、静かに手を挙げて監督者に知らせること.

課題1 (数学) (25点)

関数 $y = x^2 - 2$ の 曲線について次の問いに答えなさい.

- (1) この曲線上の点 (2,2)における接線の方程式を求めなさい.
- (2) この接線とx軸の交点における、xの値を答えなさい.

課題2 (英語) (15点)

以下の英文に書かれている内容について、日本語で説明せよ.分からない単語があれば、口頭試験の際に質問してもよい.

The subject of kinematics deals with displacement, velocity, acceleration, and time. The design of cams, gears, and linkages to control or produce certain desired motions are examples of kinematical problems.

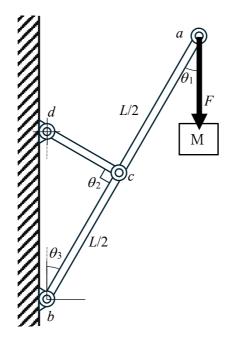
課題3(物理基礎)(40点)

容器内に理想気体 m [kg]が封入されており、その状態は絶対圧力 P_1 [Pa]、体積 V_1 [m³]、温度 T_1 [K] であった.この容器を加熱して、体積一定のまま容器内の絶対圧力をもとの 2 倍まで高めた.加熱量は Q_{12} [J]であった.このとき、以下の問いに答えよ.なお、容器による熱的な影響は無視して良い.

- (1) 加熱後の温度 $T_2[K]$ を表す式表現について説明しなさい.
- (2) この状態変化における理想気体の比熱 c [J/(kg·K)]の導出について説明しなさい.
- (3) 容器内の理想気体における加熱の前後の内部エネルギー変化量 $\Delta U[J]$ について説明しなさい.

課題4(選択科目)(40点)

(選択科目1 物理)

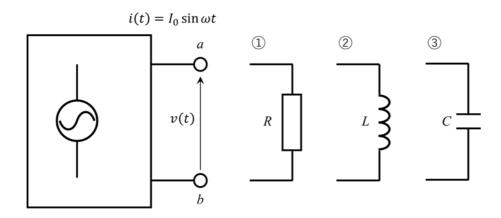

波長 $\lambda[m]$, 振幅 A[m], 周期 T[s]の正弦波について以下の問いに答えよ.

- (1) この正弦波の速度 v[m/s]を求めなさい.
- (2) 上記 (1) で求めた速度 v [m/s]を周波数 f[Hz]を用いて表しなさい.
- (3) この正弦波について、時間 t[s]、かつ距離 x[m]における変位 y[m]を求める一般式を書きなさい。
- (4) この正弦波のうちの 1 つが時間 t=0[s]に距離 x=0[m]から移動し始め,距離 $x=\lambda[m]$ の位置にある壁で自由端反射する場合,時間 $t=\frac{3}{2}T[s]$ における瞬間の合成波について説明しなさい.

(選択科目2機械設計)

間図 4-2 に示すように、鉛直な壁面に断面積 $A[m^2]$ の丸棒を組み合わせた構造体を設置し、点 a に 吊り下げた物体 M の重さによる力 F[N]を支える。丸棒の組立や壁への設置はピン接続とし、回転は 自由にできる。丸棒の長さは $\overline{ab}=L$ 、 $\overline{ac}=\overline{bc}=L/2$ の関係であり、その角度に関して $\theta_1=\theta_3$ 、 $\theta_2=90^\circ$ とする。このとき、以下の問いに答えよ。なお、丸棒の変形はなくその自重も無視して良い。

- (1) \overline{cd} 部分の丸棒の軸方向に作用する引張応力 σ_{cd} [Pa]と角度 θ_1 [°]の関係を説明しなさい.
- (2) \overline{ab} 部分の丸棒の軸方向に作用する圧縮応力 σ_{ab} [Pa]の導出について説明しなさい.



問図 4-2 物体 M を支える構造体

課題4 (選択科目3 電気基礎)

間図 4-3 に示す正弦波交流電源装置の端子 a-b 間に負荷①,負荷②または負荷③を接続し,電源を調整して各々の負荷に電流 $i(t)=I_0\sin\omega t$ [A]を流したとする.各々の負荷に発生する電圧降下を導出しなさい.ここで,コンデンサの初期電荷は0とする.

- ① 抵抗 $R[\Omega]$ を接続したときの電圧 $v(t) = v_R(t)$ [V]
- ② インダクタンス L[H] を接続したときの電圧 $v(t) = v_L(t)[V]$
- ③ コンデンサ C[F]を接続したときの電圧 $v(t) = v_C(t)[V]$

問図 4-3 正弦波交流電源装置および接続する負荷